bubiwotback to protowhitepaper
edit on github

Incentivizing Social Graphs

Abstract

We outline a minimal, platform-agnostic framework for rewarding peer-to-peer attestations via stake-backed contracts. Every interaction generates on-ledger promises and network fees that fund a Bitcoin-pegged UBI pool.


1. Variables & Constants

  • i, j: users
  • CijC_{ij}: contract between i→j
  • aia_i: amount pre-loaded by initiator
  • bjb_j: amount pre-loaded by responder
  • ϕ\phi: network fee rate (0≤φ<1) (0 possible?)
  • FF: total fees accrued (operations) per epoch
  • UiU_i: user i's promised earnings

2. Data Model

Contracts

  • Cij={i,j,a,b,status,t0,t1}C_{ij} = \{i, j, a, b, status, t_0, t_1\}
  • amount=max(a,b)amount = max(a, b)
  • status: pending → signed at t1t_1

Earnings

  • On signing: Uj  +=  (1ϕ)max(a,b)U_j \;+=\; (1-\phi)\,\max(a,b)

Fees

  • Collected by protocol: F  +=  ϕmax(a,b)F \;+=\; \phi\,\max(a,b)

3. Interaction Flow

  1. Initiate: i calls createContract(i,j,a) (default a=0)
  2. Propose: j calls propose(CijC_{ij},b) (default b=0)
  3. Sign: either calls sign(CijC_{ij}) → sets status, timestamp
  4. Settle:
    • j's pending earnings Uj+=(1ϕ)max(a,b)U_j += (1-\phi)·\max(a,b)
    • protocol pool F+=ϕmax(a,b)F += \phi·\max(a,b)

4. Network Value & Distribution

Let N be signed contracts in epoch t: F(t)=ϕk=1Nmax(ak,bk)F^{(t)} = \phi\sum_{k=1}^N \max(a_k,b_k)

Total promised UBI: Ω(t)=(1ϕ)k=1Nmax(ak,bk)\Omega^{(t)} = (1-\phi)\sum_{k=1}^N \max(a_k,b_k)

Fees F can underwrite growth (marketing, dispute bounties), while Ω funds user UBI.


5. Discussion

  • Stateless: contracts require no user history.
  • Flexible fees: setting φ tunes protocol revenue vs. UBI.
  • Extensible: layer in on-chain anchoring or trust-scores later.
  • Safety: default zero-stake contracts minimize risk.